
U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NATIONAL WEATHER SERVICE
NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 76

The Potential Vorticity Theorem
in General a- Coordinates

Joseph P. Gerrity
Development Division

JUNE 1972



1. Introduction

The principle of the conservation of potential vorticity formed
the basis for early work in numerical weather prediction (Charney and
Phillips; 1953). During the past decade, modeling research has departed
from those early roots. It occurred to me that I have no recollection
of ever seeing the potential vorticity theorem stated in the general a
coordinate system (Phillips, 1957; Shuman and Hovermale, 1968).

This may seem to be an academic point, but I think it is worthwhile
to stress that the theorem is still valid for the primitive equation formu.
lation of adiabatic, inviscid and hydrostatic motion. Indeed, the potential
vorticity has served an excellent tracer for particle trajectories, and may
serve a useful function in efforts to diagnose the occasional errors found
in numerical forecasts.

2. Potential Vorticity Theorem

The theorem of Ertel (cf. Greenspan, 1968) may be stated as the fact
that in adiabatic, inviscid flow the quantity,

pl [V3x V + 2a].V30, l)

in which p is density, a the Earthts rotation vector, and e is potential
temperature, is conserved following the motion of a particle (Haltiner,
1971). Most meteorological uses of the theorem have been based on hydro-
statically balanced flow. The simplest derivation of the theorem may be
given using isentropic coordinates (Thompson, 1961).

The equations of motion, continuity and thermodynamics take the
simple forms

a_+ vxV+ V + nw = v+0 = (2)

C3)at a e +o ae -

deO =0°(4)dt- 

in which Te is the absolute vorticity in the 0 surface and V is the
Montgomery streamfunction,



The vorticityi equation is obtained from C21 and the individual
derivative

_-d L + V+ (5)
dt 8t

is used in (3) to obtain

d- no =- ne V (6)

d Dp = p V 'V 7)
dt De 8o 0

Combining equations (6) and (7) yields

d no)
j [tin.lR0J'J = O (8)

This is the potential vorticity theorem in a hydrostatically
balanced flow. Note that the absolute vorticity is measured in the 0
coordinate surface.

The transformation of equation (8) into a general a coordinate
is relatively straightforward. One obtains

a +t x - a (9)r([t\-1ray~ + K x . V X = 0

Note that no is the absolute vorticity in the relevant a coordinate
surface and the t is the unit vertical vector.

If Q is any quantity, one may prove through the use of the
continuity equation,

a ,M a =0 (10)at 8a C a at a

that

{(1½ t + Va' (VQ) + d(Q)} tf (11)
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Consequently, it follows that (91 is equivalently expressed in

the form,

a+ O( + = 0 (12)at

if one defines
+

= no ~a + I x V Ve (13)

From the form (12), it is readily seen that ~ is an integral
invariant of the motion when the hypothesis of inviscid, adiabatic flow
is appropriate.

3. Remarks

The derivation given above is algebraically simple, It is, however,
a difficult task to prove the theorem Beginning with the basic equations
in a coordinates. Although that derivation has been carried through, it
will not be repeated here. It may be noted, however, that the proof
required the use of many vector identities, The probability is high that
the finite difference versions of these identities do not hold for any of
the widely used difference schemes, Consequently, one may anticipate the
violation of this fundamental meteorological principle in many prediction
models.

It is particularly suggestive to consider the sensitivity of the
potential vorticity to the parameter, :P.

In the Shuman-Hovermale co-system, the distribution of - will show
considerable horizontal variability in the neighborhood of the high
mountains and in regions with steeply sloping "tropopause." It appears
to be worthwhile to examine how closely the potential vorticity is
conserved following the motion of particles moving through such environs.
Such calculations could be made with the aid of the trajectory calculation
scheme developed by R. Reap of TDL.
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